Heibbe's Group

Research Group under Prof. Dr. Heibbe Cristhian B. de Oliveira

Prizes

Back Cover of Physical Chemistry Chemical Physics

cover PCCP 2015
Rovibrational spectroscopic constants of the interaction between ammonia and metallo-phthalocyanines: a theoretical protocol for ammonia sensor design

Alan R. Baggio, Daniel F. S. Machado, Valter H. Carvalho-Silva, Leonardo G. Paterno and Heibbe Cristhian B. de Oliveira


In the present contribution, we develop an adapted theoretical approach based on DFT calculations (B3LYP functional) and solution of the nuclear Schrödinger equation by using the Discrete Variable Representation method to model the interaction of ammonia with metallo-phthalocyanines (MPcs, where M = Fe2+, Co2+, Ni2+, Cu2+ or Zn2+). This approach is intended to be a general protocol for the rational design of chemical sensors. The as-obtained binding energy curves, obtained from ab initio points, permitted us to calculate rovibrational energies and spectroscopic constants, as well as to establish the relative population of rovibrational states in different types of MPc–NH3 thermodynamic systems. Simulated binding energy curves show that the binding energy in MPc–NH3 systems is dependent on the type of M central ion, decreasing in the order FePc > ZnPc > CoPc > CuPc > NiPc, with values spanning from −170 to −16 kJ mol−1. Also, MPc–NH3 systems have at least 16 rovibrational levels, which confirms that they are all bound systems (chemically or physically). Despite that, only the interaction between ammonia and FePc, CoPc or ZnPc is spontaneous within the studied temperature range (200–700 K). NiPc and CuPc show a change between spontaneous and non-spontaneous behaviours at 400 K and 500 K, respectively. Less bound systems should more efficiently guarantee the sensors' signal reset, while they are also less specific than sensors built with medium to strongly bound systems. Moreover, the intermediate energy and spontaneous binding of ammonia to NiPc and CuPc at operation temperatures, as determined with our theoretical approach, suggests that these MPcs are most promising for ammonia sensors.



Cover of Journal of Computacional Chemistry

Cover JCC
Deformed transition-state theory: Deviation from Arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime

Valter H. Carvalho-Silva, Vincenzo Aquilanti, Heibbe C. B. de Oliveira, Kleber C. Mundim


A formulation is presented for the application of tools from quantum chemistry and transition-state theory to phenomenologically cover cases where reaction rates deviate from Arrhenius law at low temperatures. A parameter d is introduced to describe the deviation for the systems from reaching the thermodynamic limit and is identified as the linearizing coefficient in the dependence of the inverse activation energy with inverse temperature. Its physical meaning is given and when deviation can be ascribed to quantum mechanical tunneling its value is calculated explicitly. Here, a new derivation is given of the previously established relationship of the parameter d with features of the barrier in the potential energy surface. The proposed variant of transition state theory permits comparison with experiments and tests against alternative formulations. Prescriptions are provided and implemented to three hydrogen transfer reactions: CH4 + OH CH3 + H2O, CH3Cl + OH CH2Cl + H2O and H2 + CN H + HCN, widely investigated both experimentally and theoretically. © 2016 Wiley Periodicals, Inc.